The QR iteration method for quasiseparable matrices

نویسندگان

  • Y. Eidelman
  • I. Gohberg
چکیده

Let {ak}, k = 1, . . . , N be a family of matrices of sizes rk × rk−1. For positive integers i, j, i > j define the operation aij as follows: a × ij = ai−1 · · ·aj+1 for i > j + 1, aj+1,j = Irj . Let {bk}, k = 1, . . . , N be a family of matrices of sizes rk−1 × rk. For positive integers i, j, j > i define the operation bij as follows: b × ij = bi+1 · · · bj−1 for j > i+ 1, bi,i+1 = Iri . It is easy to see that aik = a × ija × j+1,k, i > j ≥ k (2.1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The QR iteration method for Hermitian quasiseparable matrices of an arbitrary order

The QR iteration method for tridiagonal matrices is in the heart of one classical method to solve the general eigenvalue problem. In this paper we consider the more general class of quasiseparable matrices that includes not only tridiagonal but also companion, comrade, unitary Hessenberg and semiseparble matrices. A fast QR iteration method exploiting the Hermitian quasiseparable structure (and...

متن کامل

Stability of QR-based fast system solvers for a subclass of quasiseparable rank one matrices

The development of fast algorithms to perform computations with quasiseparable matrices has received a lot of attention in the last decade. Many different algorithms have been presented by several research groups all over the world. Despite this intense activity, to the best of our knowledge, there is no rounding error analysis published for these fast algorithms. In this paper, we present erro...

متن کامل

On solving the definite tridiagonal symmetric generalized eigenvalue problem

In this manuscript we will present a new fast technique for solving the generalized eigenvalue problem T x = λSx, in which both matrices T and S are symmetric tridiagonal matrices and the matrix S is assumed to be positive definite.1 A method for computing the eigenvalues is translating it to a standard eigenvalue problem of the following form: L−1T L−T (LT x) = λ(LT x), where S = LLT is the Ch...

متن کامل

A Parallel Qr-factorization/solver of Quasiseparable Matrices

Abstract. This manuscript focuses on the development of a parallel QR-factorization of structured rank matrices, which can then be used for solving systems of equations. First, we will prove the existence of two types of Givens transformations, named rank decreasing and rank expanding Givens transformations. Combining these two types of Givens transformations leads to different patterns for ann...

متن کامل

Computations with quasiseparable polynomials and matrices

In this paper we survey several recent results that highlight an interplay between a relatively new class of quasiseparable matrices and polynomials. Quasiseparable matrices generalize two classical matrix classes, Jacobi (tridiagonal) matrices and unitary Hessenberg matrices that are known to correspond to real orthogonal polynomials and Szegö polynomials, resp. The latter two polynomial famil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004